Herleitung der Formeln

```
1) K(t)=Ko*(1+p/100\%)^t exponentielle Zunahme
```

2) $K(t)=Ko*(1-p/100\%)^t$ exponentielle Abnahme

Ko=Anfangswert p=Zinssatz in % t=Laufzeit in Jahre

0 Jahre Ko

1 Jahre K(1)=Ko+Ko*p/100%)=Ko*(1+p/100%) Substitution a=1+p/100% wegen der Übersichtlichkeit

2 Jahre K(2)=K1+K1*p/100%=Ko*a+Ko*a*p/100%=Ko*a*(1+p/100%)=Ko*a*a K(2)=Ko*a²

3 Jahre K(3)=K2+K2*p/100%=Ko*a²+Ko*a²*p/100%=Ko*a²*(1+p/100%)=Ko*a²*a K(3)=Ko*a³

usw.

Endformel somit $K(t)=Ko*(1+p/100\%)^t$

0 Jahre Ko

1 Jahre K(1)=Ko-Ko*P/100%)=Ko*(1-p/100%) mit a=1-p/100%

2 Jahre K(2)=K1-K1*p/100%=Ko*a-Ko*a*P/100%=Ko*a*(1-p/100%)=Ko*a*a K(2)=Ko*a²

3 Jahre K(3)=K2-K2*p/100%=Ko*a²-Ko*a²*p/100%=Ko*a²*(1-p/100%)=Ko*a²*a K(3)=Ko*a³

usw.

Endformel somit $K(t)=Ko*(1-p/100\%)^t$

Wann hat sich der Wert Ko verdoppelt?

 $K(t)=Ko*(1+p/100\%)^t$ mit K(t)=Ko*2

Ko*2=Ko*(1+p/100%)^t

2=(1+p/100%)^t aus dem Mathe-Formelbuch Logarithmengesetze $\log(\mathbf{u}^{\mathbf{v}})=\mathbf{v}^{\mathbf{v}}\log(\mathbf{u})$ $\log(2)=\log((1+p/100\%)^{\mathbf{v}})=\mathbf{t}^{\mathbf{v}}\log(1+p/100\%)$

t=lg(2)/(lg(1+p/100%) mit jährlichen Zinssatz oder Preissteigerung p=5%

t=lg(2)/(lg(1+5%/100%)=**14,20.. Jahre** dann hat sich der Preis oder das Anfangskapital verdoppelt

Hinweis:Anstatt des Logarithmus lg zur Basis 10 kann man auch den natürlichen Logarithmus zur Basis 2,711828.. verwenden

t=ln(2)/(ln(1+p/100%))

Wann hat sich der Wert Ko halbiert (Inflation)?

 $K(t)=Ko^*(1-p/100\%)^t$ K(t)=Ko/2 $Ko/2=Ko^*(1-p/100\%)^t$ K(t)=Ko/2 $Ko/2=Ko^*(1-p/100\%)^t$ mit dem Logarithmengesetz $\log(u^v)=v^*\log(u)$ $\log(1/2)=\log(1-p/100\%)^t$ $\log(1/2)=\log(1-p/100\%)^t$

t=lg(1/2)/(lg(1-p/100%)) mit jährlicher Inflation p=5% ergibt

t=lg(1/2)/(lg(1-5%/100%)=13,51 **Jahre** dann hat sich der Wert vom Sparguthaben halbiert

mit dem natürlichen Logarithmus l
n ergibt sich analog t=ln(1/2)/(ln(1-p/100%)