Einheitskreis

Der **Einheitskreis** stellt ein sich drehenden **Einheitsvektor**-Betrag r=1-dar.

$$y=f(x)=\sin(w^*x+b)$$
 und $y=f(x)=\cos(w^*x+b)$

w=positiv der Einheitsvektor dreht sich entgegen dem Uhrzeigersinn (mathematisch positive Drehrichtung)

w=negativ der Einheitsvektor dreht sich im Uhrzeigersinn

Man zeichnet den Einheitskreis und direkt daneben die Funktionen $y=f(x)=\sin(x)$ und $y=f(x)=\cos(x)$ in ein x-y-Koordinatensystem.

Wenn c=0 (y=f(x)=a*sin(w*x+b)+c und y=f(x)=a*cos(w*x+b)+c) liegt der **Mittelpunkt** des Einheitskreises auf selber Höhe,wie die **x-Achse** des x-y-Koordinatensystems.

Immer eine **Zeichnung** machen,damit man den Überblick behält!!

Im Einheitskreis sieht man ein **rechtwinkliges Dreieck,**wenn man den Einheitsvektor in seine y-Komponente und x-Komponente zerlegt.

Aus dem Mathe-Formelbuch, Kapitel Geometrie (rechtwinkliges Dreieck).

sin(a)=Gk/Hy ergibt sin(a)*Hy=Gk mit Hy=1 ist der Betrag des Einheitsvektors **cos(a)=Ak/Hy** ergibt cos(a)*Hy=Ak mit Hy=1 ist der Betrag des Einheitsvektors

(a)=Winkel Alpha im rechtwinkligen Dreieck

Hy=Hypotenuse ist die längste Seite im rechtwinkligen Dreieck

Gk=Gegenkathete ist die Seite, die gegenüber dem Winkel (a) liegt

Ak=Ankathete ist die Seite, die am Winkel (a) liegt

Daraus ergibt sich dann $y=f(x)=1*\sin(x)=\sin(x)$ und $y=f(x)=1*\cos(x)=\cos(x)$

Aus dem Einheitskreis kann man direkt die Extremwerte und die Nullstellen ablesen.

y=f(x)=sin(x) ist die y-Komponente des Einheitsvektors

Nullstellen aus dem Einheitskreis abgelesen x=0 $x=pi=180^{\circ}$ und $x=2pi=360^{\circ}$ Extremwerte aus dem Einheitskreis abgelesen $x=pi/2=90^{\circ}$ (Maximum y=1) $x=3/2pi=270^{\circ}$ (Minimum y=-1)

bei y=sin(w*x+b) gilt das Selbe

Nullstellen $0=w^*x+b$ ergibt x=-b/w pi= w^*x+b x=(pi-b)/w $2pi=w^*x+b$ x=(2pi-b)/w

Maximum pi/2=w*x+b x=(pi/2-b)/w

Minimum 3/2pi=w*x+b x=(3/2pi-b)/w

y=f(x)=cos(x)

Nullstellen aus dem Einheitskreis abgelesen **x=pi/2=90° x=3/2pi=270°**

Extremwerte aus dem Einheitskreis abgelesen **x=0** (Maximum y=1) **x=pi=180**° (Minimum y=-1)

bei y=f(x)=cos(w*x+b)

Nullstellen pi/2=w*x+b x=(pi/2-b)w 3/2pi=w*x+b x=(3/2pi-b)/w

Maximum 0=w*x+b x=-b/w

Minimum pi=w*x+b x=(pi-b)/w

Verschiebung auf der y-Achse

$$y=f(x)=\sin(w*x+b)+c$$
 und $y=f(x)=\cos(w*x+b)+c$

Am Einheitskreis verschiebt man dann entsprechend den Mittelpunkt nach oben oder unten

Hinweis:Die Extrema **Maximum/Minimum** werden dadurch auf der x-Achse nicht verschoben. Die Nullstellen (Schnittpunkte mit der x-Achse) liegen auf der x-Achse anders,als wenn c=0 wäre

Nullstelle:
$$0=a*sin(w*x+b)+c$$
 ergibt $-c/a=sin(w*x+b)$ also $arcsin(-c/a)=w*x+b$ $arcsin(-c/a)-b=w*x$

$$x=(arcsin(-c/a)-b)/w$$

Nullstelle:
$$0=a*cos(w*x+b)+c$$
 ergibt $-c/a=cos(w*x+b)$ also $arccos(-c/a)=w*x+b$ $arccos(-c/a)-b=w*x$ $\mathbf{x}=(\mathbf{arccos(-c/a)-b})/\mathbf{w}$

Die Nullstellen liegen symetrisch zu den Extrema (Maximum/Minimum) und wenn man eine Nullstelle hat,dann kann man über den Abstand zum Extrema eine weitere Nullstelle bestimmen.

Die beiden Funktionen haben immer eine **positive Halbwelle** und eine **negative Halbwelle** und die Nullstellen trennen beide Halbwellen.